3.118 \(\int \frac{\cos (c+d x)}{(b \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=69 \[ \frac{2 \sin (c+d x)}{5 d (b \sec (c+d x))^{3/2}}+\frac{6 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 b d \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}} \]

[Out]

(6*EllipticE[(c + d*x)/2, 2])/(5*b*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*Sin[c + d*x])/(5*d*(b*Sec[c
 + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0448313, antiderivative size = 69, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.21, Rules used = {16, 3769, 3771, 2639} \[ \frac{2 \sin (c+d x)}{5 d (b \sec (c+d x))^{3/2}}+\frac{6 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 b d \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]/(b*Sec[c + d*x])^(3/2),x]

[Out]

(6*EllipticE[(c + d*x)/2, 2])/(5*b*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*Sin[c + d*x])/(5*d*(b*Sec[c
 + d*x])^(3/2))

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{\cos (c+d x)}{(b \sec (c+d x))^{3/2}} \, dx &=b \int \frac{1}{(b \sec (c+d x))^{5/2}} \, dx\\ &=\frac{2 \sin (c+d x)}{5 d (b \sec (c+d x))^{3/2}}+\frac{3 \int \frac{1}{\sqrt{b \sec (c+d x)}} \, dx}{5 b}\\ &=\frac{2 \sin (c+d x)}{5 d (b \sec (c+d x))^{3/2}}+\frac{3 \int \sqrt{\cos (c+d x)} \, dx}{5 b \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}}\\ &=\frac{6 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 b d \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}}+\frac{2 \sin (c+d x)}{5 d (b \sec (c+d x))^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0322174, size = 60, normalized size = 0.87 \[ \frac{\sqrt{b \sec (c+d x)} \left (\sin (c+d x)+\sin (3 (c+d x))+12 \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )\right )}{10 b^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]/(b*Sec[c + d*x])^(3/2),x]

[Out]

(Sqrt[b*Sec[c + d*x]]*(12*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + Sin[c + d*x] + Sin[3*(c + d*x)]))/(10
*b^2*d)

________________________________________________________________________________________

Maple [C]  time = 0.197, size = 321, normalized size = 4.7 \begin{align*} -{\frac{2}{5\,d \left ( \cos \left ( dx+c \right ) \right ) ^{2}\sin \left ( dx+c \right ) } \left ( 3\,i\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) \sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}{\it EllipticE} \left ({\frac{i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }},i \right ) -3\,i\sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}{\it EllipticF} \left ({\frac{i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }},i \right ) \sin \left ( dx+c \right ) \cos \left ( dx+c \right ) +3\,i\sin \left ( dx+c \right ) \sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}{\it EllipticE} \left ({\frac{i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }},i \right ) -3\,i\sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}{\it EllipticF} \left ({\frac{i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }},i \right ) \sin \left ( dx+c \right ) + \left ( \cos \left ( dx+c \right ) \right ) ^{4}+2\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}-3\,\cos \left ( dx+c \right ) \right ) \left ({\frac{b}{\cos \left ( dx+c \right ) }} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)/(b*sec(d*x+c))^(3/2),x)

[Out]

-2/5/d*(3*I*cos(d*x+c)*sin(d*x+c)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(I*(-1+c
os(d*x+c))/sin(d*x+c),I)-3*I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-1+cos(d*
x+c))/sin(d*x+c),I)*sin(d*x+c)*cos(d*x+c)+3*I*sin(d*x+c)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^
(1/2)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)-3*I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)
*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*sin(d*x+c)+cos(d*x+c)^4+2*cos(d*x+c)^2-3*cos(d*x+c))/cos(d*x+c)^2/(
b/cos(d*x+c))^(3/2)/sin(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )}{\left (b \sec \left (d x + c\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)/(b*sec(d*x + c))^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b \sec \left (d x + c\right )} \cos \left (d x + c\right )}{b^{2} \sec \left (d x + c\right )^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(d*x + c))*cos(d*x + c)/(b^2*sec(d*x + c)^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos{\left (c + d x \right )}}{\left (b \sec{\left (c + d x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(b*sec(d*x+c))**(3/2),x)

[Out]

Integral(cos(c + d*x)/(b*sec(c + d*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )}{\left (b \sec \left (d x + c\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)/(b*sec(d*x + c))^(3/2), x)